-- this script has side-effects, so it requires replicate commands mode -- redis.replicate_commands() local rate_limit_key = KEYS[1] local burst = ARGV[1] local rate = ARGV[2] local period = ARGV[3] -- we're only ever asking for 1 request at a time local cost = 1 --local cost = tonumber(ARGV[4]) local emission_interval = period / rate local increment = emission_interval * cost local burst_offset = emission_interval * burst -- redis returns time as an array containing two integers: seconds of the epoch -- time (10 digits) and microseconds (6 digits). for convenience we need to -- convert them to a floating point number. the resulting number is 16 digits, -- bordering on the limits of a 64-bit double-precision floating point number. -- adjust the epoch to be relative to Jan 1, 2017 00:00:00 GMT to avoid floating -- point problems. this approach is good until "now" is 2,483,228,799 (Wed, 09 -- Sep 2048 01:46:39 GMT), when the adjusted value is 16 digits. local jan_1_2017 = 1483228800 local now = redis.call("TIME") now = (now[1] - jan_1_2017) + (now[2] / 1000000) local tat = redis.call("GET", rate_limit_key) if not tat then tat = now else tat = tonumber(tat) end tat = math.max(tat, now) local new_tat = tat + increment local allow_at = new_tat - burst_offset local diff = now - allow_at local remaining = diff / emission_interval if remaining < 0 then local reset_after = tat - now local retry_after = diff * -1 return { 0, -- remaining tostring(retry_after), reset_after, } end local reset_after = new_tat - now if reset_after > 0 then redis.call("SET", rate_limit_key, new_tat, "EX", math.ceil(reset_after)) end local retry_after = -1 return { remaining, tostring(retry_after), reset_after }